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FOREWORD

This document is the final technical summary for
contract NAS8-21368. This contract was awarded to the
Engineering Experiment Station, Auburn, Alabama, June 28,
1968, and was extended June 27, 1969 by the George C.
Marshall Space Flight Center, National Aeronautics and

Space Administration, Huntsville, Alabama.
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SUMMARY

Methods for the generation of the first and second or-
der sensitivity coefficients for systems whose input-output
relationship is describable by a linear, ordinary, constant

coefficient differential equation of the following type,

a_ d"c + a _1 atle 40 L L4 a; de + ajc =
S de? atn-t dt
b, dfr + b 4 d®lr + . . .+ by dr + bgr, (1)
dt® ae~t dt

are presented in this report. The equation's coefficients
may be functions of the system parameters and the order of
numerator dynamics may be as great as the order of the de-
nominator dynamics. It is shown that the first order sensi-
tivity coefficients with respect to each parameter, pj,
i=1,2,...,k, may be generated as linear combinations of the
signals present in the system and one senstitivity model.
The generation of the second order sensitivity coefficients
with respect to each parameter pj may be accomplished with
k+1 sensitivity models in addition‘to the system model.

The first and second order output sensitivities may
be used for the purpose of generating the first and second

order sensitivities of a class of cost functionals. The
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cost sensitivities in turn are utilized for the purpose
of determining parameter sets which yield a relative
minimum in the cost functional.

An s-domain proof (Laplace transform) of the often
noted symmetry and complete simultaneity property of the
first order state sensitivities of a system in the com-
panion canonic form {[5] is given. This proof is extended
to the second order state sensitivities. The implication
of this result is that the second order state sensitivi-
ties with respect to any given number of system parameters
may be generated utilizing two sensitivity ﬁodels instead
of k+1l. Futhermore, the system need not be in the form of
equation (1). Removal of this restriction means that one
does not need the transfer function between input and out-

put. The system may be simulated in any form desired.



LIST OF PERSONNAL

The following named staff members of Auburn University

have actively participated on this project:

C. L. Phillips - Professor of Electrical Engineering

C. E., Kulas - Instructor of Electrical Engineering



TABLE OF CONTENTS

LIST OF FIGURES . . .« ¢ ¢ & o « o o s o s o o » « » vii
I. INTRODUCTION . . . ¢ & &« o« o o o o o o « « o1
IT. THE SENSITIVITY MODELS . . . . . . . . « . . 3
First Order Sensitivity Model
Second Order Sensitivity Model
Discussion of the Given Techniques
ITI. APPLICATION OF THE SENSITIVITY COEFFICIENTS . 9
IV. PROPERTIES OF THE STATE SENSITIVITIES . . . . 14

First Order State Sensitivities
Second Order State Sensitivities

V. CONCLUSIONS . . . . . . + « « « « « « « . . . 19

REFERENCES . . + « & + o o v v « o & o o « o « &+ » 23

vi



LIST OF FIGURES

System and Sensitivity Model

The "Method of Sensitivity Points" .

System and k+1l Sensitivity Models

Inputs a
W

vii

12



I. INTRODUCTION

The purpose of this report is to present methods for
generating the first and second order cross output sensi-
tivity coefficients for systems whose input-output rela-
tionship is describable by a linear, ordinary, constant

coefficient differential equation of the type

n n-1 \ -
a dc+ a 1 4 c+ .. .+a; dc+ayec-=

atn agn-1 at

n -1 n-1
dt dt dt

b dr + b d® e .. L 4b, dr+b,. . (I-1)

The equation's coefficients may be functions of pj, for
j=1,2,...,k system parameters and the order of numerator
dynamics may be as great as the order of the denominator
dynamics.

In this report a first order output sensitivity coef-
ficient is the 9c(t)/dpj and a second order cross output
" sensitivity coefficient is the 32c(t)/3pj3pi. For all
j=i it is called the second order output sensitivity coef-
ficient. Since the sensitivity coefficients are by defini~-
tion evaluated at the nominal wvalues of pj, no special

notation is used to indicate this. The class of cost func~-

tionals (PI) whose first and second order sensitivities



are to be generated in this report are of the form
P = [T Fe(t,p))at. (1-2)

In the above equation c(t;g) is the system's output,

p is the parameter set for which the PI sensitivities

are to be generated and F(c(t,p))is a functional rela-
tionship of the output. The first and second order cost
sensitivities are used for the purpose of minimizing

the cost functional with respect to a set of system para-

meters for a given input.



II. THE SENSITIVITY MODELS

In this Chapter a procedure is given for the genera-
tion of the first, second and second order cross sensitivity
coefficients. The second order cross sensitivity coefficient
is defined as Szc(t)/apjapi where c(t) is the system's re-
sponse to a given input and pj,pi are the system parameters.
For all i=j the above partial is called the second order
sensitivity coefficient.

First Order Sensitivity Model

The Laplace transform of equation (I-1) assuming zero
initial conditions is

= bnSn + bn;lsnﬂl + . . .+ bls -+ bo = N . (II—l)

C
= n A~-1
R a s+ a, 18 + . . .+ a;s + ag D

The partial of C with respect to a parameter pj is
9C = RD3pjN - RNopjD =

. 2 ’
apj D n D/a

R9pjN - CdpjD 5 (11-2)

1
a

where 9pj( ) denotes 3( )/3pj. It has been shown that the
first order sensitivity coefficients may be obtained from

the signals present at the nodes in Figure 1i[1,2]. That 1is,
3p i = 8 3pjb_ - S 3pj (11-
pic(t) Lie (Mz prz . pjaz) [1-3)

for j=1,2,...,k. The familiar "Method of Sensitivity

Points" which applies to systems whose input-output rela-



tionship is describable by a differential equation

n n-1
c

dec + a d + . . . + a, de + a; ¢ =1, (11-4)

dth den-1 dt

is shown in Figure 2 [3]. Clearly, Figure 2 is a special
case of Figure 1.

Second Order Sensiti#ity Model

Let 3pjpi( ) denote 32( )/3pjopi. The second order
cross partial of C (second order partial for j=1i) is
9pjpiC = DROPjpiN-DCOpjpiD-D3piCopjD-RIPjNIpiD+CapjDapiD .

2
D

From equation (II-2)
RopjN = D3pjC + CdpjD .
The above two equations yield

opjpiC = 1 ROpjpiN-COpjpiD-3piCopjD-9pjCOpiD, (II-5)

an D/an

The system shown in Figure 1 is now represented as shown
in Figure 3 with k additional sensitivity models whose in-
puts are the first order sensitivities as iﬁdicated. The
second order cross sensitivities may be obtained from the
summation of the signals present at the nodes in Figure 3

in accordance with the following equation,
N ,
dpjpiC = Z (M 9pjpidb -S 9pjpia -, R 9pja - _ R dpi 11-6
pipi o2, (M opipib S dpjpia - R dpja, jRgorian, ( )

where i,j are elements of the number set 1,2,...,k and



iRz denotes node % of the sensitivity model whose input
is the Spic(t). Clearly, the total number of sensitivity
models required for the generation of k second order

sensitivity coefficients is k+1.

-Discussion of the Given Techniques

The advantage of the application of the model shown
in Figure 3 for the generation of the first and second order
sensitivities is that the analog or digital simulation is
strictly procedural and consequently requires only a small
acquaintance with simulation methods. Im particular it is
readily adaptable to digital simulation utilizing the con-
tinuous system modeling procedures available in the present
day digital computer. The disadvantage is that the transfer
function between the point designated as input and the point
designated as output must be available. This requirement in .
addition to the need of evaluating the partials of the trans-
fer function's coefficients limits the practical applica-
tion of the method to low order systems. The removal of these

restrictions is discussed in Chapter V.
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Figure 3. System and k+1 Sensitivity Models for
Second Order Cross Sensitivities.




III. APPLICATION OF THE SENSITIVITY COEFFICIENTS

The first and second order output sensitivities may be

used for the purpose of generating the first and second

order sensitivities of a class of cost functionals. O0f par-

ticular interest are cost functionals (PI) of the following

type’

PI = éTF(c(t,P_))dt R

where c(t,p) is the response of the system to a

(II1-1)

given input,

p is the parameter set pj for which the PI sensitivities

are to be generated and F(c(t,p) is a functional relation-

ship of the response.

The first order PI sensitivity with respect to a

parameter pj is

9PI = ST3F(c) dec 4t
[o]
apj o¢C apj

The second order PI sensitivity with respect to

321 = sTaF(e) 3%c + 32F(e) (Bc )2 dt.

o
3pj2 3c apji’ ac®  \3pj
The first and second order PI sensitivities may

ated from the signals available at the nodes in

(ITI-2)
pj is

(I11-3)

be gener=-

Figure 3,

Chapter II. In particular, consider the rigid body dynamics

of a launch vehicle [41],
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g = K3¢ + K7a + K4B s
¢ = -cj0 - cyb

o = ap +té - z/V ,
with the control law

B

ajgd +ajd+ boo . (III-4)

The first and second order PI sensitivities for

T 2
PI(z) = J (z(t,a ,a_,b )) dt (ITI1-5)
o o 1 o

may be generated with respect to the control law gains for
an arbitrary input O utilizing the model shown in Figure 3,
Chapter II. For the inputs shown in Figure 4, the resulting
sensitivities for sets of control law gains are given in
Table 1.

The PI sensitivities may be used for the purpose of
determining the parameter set which produces a relative mini-
mum in the cost functional. The sign of the first order PI
sensitivity shows the direction of change in the members of
the parameter set which will produce a smaller cost at the
end of the next simulation run. For example, twenty-six suc-
cessive computer runs starting with a°=6.0, a1=2.0, b°=2.0
and INPUT 1 produced a relative minimum of PI=0.027 and a
parameter set of ao=4.7, a1=1.57, b0=2.5. For each run the

parameters were changed by 1% in accordance with the sign
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of the first order PI. The choice of 1%Z as an appropriate
parameter change was made based on experience with this par-
ticular problem. The second order PI sensitivities may be
used for the purpose of determining how large a change may
be made in each of the parameters. For example, the approxi-
mation to the cost on each successive computer run with re-

spect to parameter a is
o

PI(a, + Aay) = PI(a,) + 3PI Aa, + 2°p1 Aﬂoz . (III-6)
da, Saoz 2

From Table 1 and INPUT 1 for ao=6.0, a =2.,0, bo=2.0, the

1
BzaoPI is 2.93 and aaoPI is 10.49. For a parameter change

of 1% the contribution of the second order term in (III-6)

to the new cost is apfroximately 0.1%7Z of the first order

term. Clearly, for this particular computer run the magnitude
of change in a can be considerably larger than 1% under the
restriction that the first order approximation to the new cost
is valid. Thus, the magnitude of the second order PI sensi-
tivities may be used as a basis upon which the decision of

how large a change may be made in each of the parameters for

each successive run.
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IV. ©PROPERTIES OF THE STATE SENSITIVITIES

An s~domain proof of the noted total symmetry and com-
plete simultaneity properties of the first order sensitivi-
ties of the states of a system whose input-output relation-
ship is describable by the following type of differential
equation,

dRc + andn‘lc + . . .+ azéi + ajec =r , (Iv-1)
at?h atn-4 dt

is given [5]. It is further shown that the second order
state sensitivities also possess the complete simultaneity
property. Furthermore, it is shown that the second order

state sensitivity matrix is such that

%8,0 = %B+1,p-2 (1V-2)
for f=1,2,...,n-1 and p=3,4,...,n. The implication of this
is discussed in Chapter V.

First Order State Sensitivities

The Laplace transform of equation (IV-1) assuming zero

initial conditions is

C = R =

oo ansn'1 + . . . + ags + aj

. (IVv-3)

R
s D

A signal flow graph of the above system with it's first
order sensitivity model is shown in Figure 2, Chapter. II.

Let C(s), the transfbrm of the output c(t) bé denoted

14
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by X1(s); the transform of the signal at node My be denoted
by Xz(s); . » o 3 and the transform of the signal at node

M,_q1 be denoted by Xn(s). From equation (IV-3) it follows

that
Bale = —SOX}/D,
= 1
332X1 = .8 Xl/D’
= —gh=2
3a X = -s®"1x;/D. (1V-4)

Letting ET denote [X1, X2,...5 Xp] it further follows

that . —
Bale s® s1 82 oo e sn-1
3a2XT s1 s2 s3 ceo. sO
3a3XT = -X1 s2 s3 s4 e e sn+1
. —_— ] (Iv-5)
o D
{?anXT Sn—l gD Sn+l . SZn—Z

since X _ =sX_ , X =s2x yeoos X =s®1x . The above sensitivity
2 1 3 1 n 1

matrix shows that the first order state sensitivities possess

the often noted total symmetry property [4]. The entries in

(IV-5) for which the order of s is less than or equal to n

are clearly available at the nodes of the sensitivity model
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in Figure 2, Chapter II. The first order state sensitivities

associated with the entries in (IV~-5) for which the order

of s is greater than n may be formed from linear combinations

of the signals at the nodes of Figure 2,

S% denote dagXy it

s% = -s"lx /D =

S

w0
3 wB

follows that

—Xls + anXlsn + ... + alesz +

2 2 2
—Xz - anSn = 2 sae - 3252 - alsl
2 2 2
-X3 - an83 - eeee = a283 - a8y

2
—Xn—l - ansg_l - s s ese — aZSn_l

which can be written as

a-1
n _
S¢ = “%Xg-1 ~.Z
i=3

for d=4,5,...,n.

Second Order State

Ao (AT st -
n-(d-1-i)°4 q=d-2

Sensitivities

The second ord

2
Balxl

er partial of (IV-3) is

o ) o
(-Ds dajXq + s X3)/D 2s Xq/

1
n

|
°
2
@
®
°
@
®
3
@

]
N
n

- 2n-2

Chapter II. Letting

a1X1s .
H
2
- a1Sn—2 >
g (1V-6)
2
D

.2 2
e o s e e o o 2 e @ 2s X1/D s

2
X, /D", (IV-7)
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From equations (IV-5) and (IV-7) it follows that

2 T 0 1 2 n-1
aalg s s s sess 8

2 T 2 3 4 n+1
Bazg s s 8 eees 8

2 T 4 5 6 n+3
8a3§ _ 2X1 s s 8 ceee S

» T . (IV—S)

D .

2 T 2n-2 2n-1 2n 3n-3
oa s s s cess S

ns
- . - -

The above second order state sensitivity matrix has the
property that

®g,p = %B+1l,p-2 (IV-9)

for B=1,2,...,n-1 and p=3,4,...,n.

The entries in (IV-8) for which the order of s is less
than or equal to n are available at the nodes of a second
sensitivity model whose input is the output of the sensitiv-
ity model shown in Figure 2, Chapter II. The state sensitiv-
ities for whieh the order of s is greater than n may be
formed through linear combinations of the available first and

second order state sensitivities as is shown below.
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Let Q% denote a%ZX It follows that

W

B%ZXn = 2X13n+l = 2X1s + —Zanxlsn—Zan_lxlsn-l— .o —-2a7X98 ,
} D2 D D2
2 2 2 2 1
Q, = -287-2,Q,_173,_1%,2 —ayQ7-21Q5 »
3 .3 .2 2 2 2
Qp.1 = —287-23,Q,-2,_1Q,1 « "2505-27Q7 >
3 _ .3 .3 2 22
Q, = -285-a,Q; 173, 19 2,Q3-2,Q3 »

n _ n n-1 n-1 _ _ n-1_ n-1
Q-1 = "285,972,Q, T-a, 1Qp3 - ma,Q, a,Qy g
n _ n n n-1 _ _ n-1_ n-1

Q, ~25,.172,Q, 1 n-1% - —a,Q, a1Q, :



V. CONCLUSIONS

It has been shown that for single-input single-output
Laplace transformable systems, that the first and second
order cross output sensitivities, in addition to the systems
response to a given input, may be generated through the
utilization of the system model and k+l1l sensitivity models
where k is the number of parameters whose output sensitivities
are to be generated. The system may have numerator dynamics
of order equal to or less than the order of the denominator
dynamics and the coefficients of the system may be functions
of the k parameters. The advantage of the given method is
that once the order of the system is known the structure of
the k+1 sensitivity models is specified and consequently may
be simulated either on an analog or digital computer. The
sensitivities in turmn are linear combinations of the signals
available at the nodes in the system and sensitivity models.
The disadvantage is that the system's transfer function must
be known and that the first order, second order and second
order cross partials of the transfer function's coefficients
must be evaluated at the nominal values of the parameter set
for which the sensitivities are desired.

The first and second order sensitivities of a class of

cost functionals may be obtained from the output sensitivities.

19
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The availability of the first order cost sensgitivities allows
one to seek out parameter sets which reult in relative mini-
mums of the cost. The availability of the second order sensi-
tivities allows one to make an intelligent decision as to how
large of a change may be taken for each of the parameters in
each successive computer run in the optimization scheme. Appli-
cation of the second order cost sensitivities may result in
a savings of computer run time. Experience with the problem of
minimizing drift has shown that for parameter sets (control
law gains ags ays bo) which are "far" from the set which pro-
duces "drift minimum" large changes may be taken in the para-
meter set in each computer run until one reaches the neighbor-
hood of the optimal parameter combination. The magnitude of
the available second order cost sensitivities reflects this
and consequently have been successfully used in the optimi-
zation procedure. For example, if the changes in the parameters
is restricted to 17 of the nominal values, excessive computer
run time is required in reaching the optimal values. However,
if the percentage change is varied in accordance with the
magnitude of the second order cost sensitivities the computer
run time can be considerably reduced.

The primary disadvantage of the procedure given in this

report is that the system's transfer function must be avail-
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able and that the system must be simulated in the form of
Figure 1l,Chapter II. It has been shown [5] that this restric-
tion can be removed, The basis for the removal of this re-
striction is the proof of the complete simultaneity property
of a system in the companion canonic form (the form of Equa-
tion IV-1l). Section IV of this report shows that the second
order state sensitivities of the companion canonic form also
possesses the complete simulataneity property. Consequently
the work shown in Reference [5] can be extended to the second
order case. The removal of the restriction on the form of the
system greatly complicates the digital simulation procedure.
The second order case in turn would be even more complicated.
However, the freedom of simulating the system in any form
desirable warrants research into the extension of the method
given in Reference [5].

Much of the material presented in Chapter II of this
report appears to be extendable to the case of unity negative
feedback systems with one nonlinearity. Research into this
area should be most productive. The availability of the sensi-
tivities in the nonlinear case could result in techniques for
optimization where the object is not to find the optimal
controller but to adjust parameters in a given controlier

which produces a minimum under this constraint. That is to says
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determine controller gains which realize a given objective
utilizing a controller structure that is known to give
satisfactory results but not the optimal result.

Another problem which warrants research is the genera-
tion of the output sensitivities in the case where the order
of the assumed model may change. For example consider Figure
Chapter II;the coefficient a which is a function of the sys~-
tem parameters may be zero for a given parameter set. Since
in analysis one often assumes certain parameters may be neg-
lected which in turn result in the reduction of the system
order, sensitivities of the system output with respect to
a change in system order would be of significance in veri-

fying the validity of such an assumption.

1,
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